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COMPLETE CLASSES FOR CONFIDENCE SET ESTIMATION
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Abstract: Consider the statistical model where a statistic T has a distribution belong-

ing to a one parameter family which has the strict monotone likelihood ratio property.

We study con�dence set estimation for two types of risk functions. One is a vector

risk consisting of two components: one is one minus the coverage probability and the

other is the expected measure of the set. The other risk is a linear combination of

the two components. Under certain conditions we �nd that monotone procedures are

a complete class and also that procedures with an interval property are a complete

class. As consequences we �nd that nonrandomized procedures are a complete class.

Furthermore, we �nd an analogue to the Rao-Blackwell theorem and construction for

exponential family models. Other applications and observations are noted.

Key words and phrases: Admissibility, interval property, monotone procedure, ran-

domized procedures, Rao-Blackwell construction.

1. Introduction and Summary

Consider a statistical model where a statistic T has a density belonging to

a one parameter family which has the strict monotone likelihood ratio (SMLR)

property. Let � designate the parameter and fT (tj�) denote the density of T

with respect to Lebesque measure. In Section 3 assume also that fT (tj�) can be

di�erentiated through the integral, as in (3.4). Such would arise, for example, in

many situations where a sample of size n is taken from a population which has

a one parameter exponential family distribution; then T would be a su�cient

statistic. For such a model many theoretical and practical results exist in point

estimation and hypothesis testing theory. For example, in hypothesis testing

a complete class of tests for testing H0 : � � �0 vs. H1 : � > �0 consists of

monotone tests i.e. reject if and only if T > C. (See Karlin (1956).) For one

sided testing or point estimation with bowl-shaped loss functions, Brown, Cohen

and Strawderman (BCS) (1976) showed that under mild conditions, monotone

procedures are a complete class. The BCS (1976) result applies to �xed width

con�dence interval estimation since the latter type of inference is really point

estimation. In addition to complete class results, BCS (1976) demonstrate the

following, each under certain conditions:

(a) Randomized procedures can be eliminated.
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(b) An analogue to the Rao-Blackwell theorem and construction regarding su�-

cient statistics (for non-convex loss functions).

(c) Two observations are strictly better than one observation for an entire class

of bowl-shaped loss functions. (Hence n observations are strictly better than

1; 2; : : :, or n� 1 observations.)

This paper addresses the question of complete class theory, randomized pro-

cedures, Rao-Blackwell theorem and construction, etc. for con�dence set esti-

mation. Whereas there are many studies involving a loss function approach to

con�dence set estimation, very few, if any, results of the above type exist.

Our approach to con�dence set estimation through a loss function is not

new. See for example, Winkler (1972), Joshi (1970), Cohen and Strawderman

(1973), and Casella and Berger (1990). A more typical approach is to require a

minimum coverage probability (con�dence coe�cient) in con�dence estimation.

One advantage of the loss function approach is that as the sample size goes to

in�nity a reasonable procedure will have a risk that goes to zero. Furthermore,

we emphasize a vector risk function in which one component is one minus the

coverage probability. One can restrict the class of procedures to those for which

this component is bounded above, thus insuring a minimum coverage probability.

In addition to being concerned with con�dence set estimators that are mono-

tone (in a sense de�ned in the next section) we shall be concerned with con�dence

set estimators that have an \interval" property. The interval property seems to

be intuitive and perhaps, for complete class theory, more compelling than the

monotone property. A con�dence set has the interval property if for every �, the

set of T = t for which � is included in the con�dence set, is an interval.

A convenient notation for a con�dence set estimator is the function  (�jt)
where 0 �  (�jt) � 1 denotes the probability that � is in the con�dence set,

given t. We �rst consider the loss function

L(�;  ) = b

Z
 (�jt)d� + 1�  (�jt); (1:1)

where b > 0. Note that the quantity
R
 (�jt)d� gives the volume of a con�dence

set when it is nonrandomized. The risk function therefore is

R(�;  ) = bE�[

Z
 (�jT )d�] + (1�E�[ (�jT )]): (1:2)

We also consider the vector loss function

Lv(�;  ) = (

Z
 (�jt)d�; 1 �  (�jt)); (1:3)

with risk

Rv(�;  ) = (Rv
1; R

v
2) = (E� (measure); 1� P� (coverage)); (1:4)
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where measure means Lebesgue measure. Vector losses are discussed in Cohen

and Sackrowitz (1984). The vector loss formulation is particularly valuable for set

estimation. In terms of admissible procedures, if a procedure is inadmissible for

loss (1.3) it is inadmissible for loss (1.1). The converse is however not true. Thus

if an admissible procedure with respect to loss (1.3) must have a property (to be

admissible or essentially admissible) then any procedure without the property is

not very good. Furthermore the vector loss approach is appealing since oftentimes

one wishes to restrict con�dence set estimators whose probability of coverage is

greater than or equal to a given constant.

For convenience only, we assume that the distribution of T is absolutely

continuous. Among the main results are the following:

(1) For loss (1.1), Bayes (or generalized Bayes) procedures are monotone.

(2) For loss (1.1), limits of sequences of Bayes procedures are an e-essentially

complete class. (Essential admissibility (e-admissibility) and an e-essentially

complete class are de�ned in Section 2.)

(3) For loss (1.3) and hence for loss (1.1), the set of procedures having the interval

property is an e-complete class.

(4) For loss function (1.3) and hence for loss (1.1), nonrandomized procedures

are an e-complete class.

(5) For loss function (1.1), the set of monotone procedures having the interval

property (a.e.) is an e-complete class.

As consequences of results (3), (4) and (5) we derive an analogue to the

Rao-Blackwell theorem and construction. Furthermore it is shown that two ob-

servations are strictly better than one. In Section 2 we give results on monotone

procedures and complete classes. In Section 3 we discuss procedures with the in-

terval property. Section 4 contains some remarks and discussion regarding lower

con�dence bounds.

2. Monotone Con�dence Sets

Throughout, we take the parameter space, �, and the range of T; � , to be

intervals in IR, and assume in all following expressions that � 2 �; t 2 � . The

SMLR property implies that fT (tj�) > 0 a.e: (�� ) where �� denotes Lebesque

measure on � . We begin with the de�nition of monotonicity.

De�nition 2.1. The measurable function  (�jt) is monotone if for any � <

�0; t < t0 the three inequalities

 (�jt) < 1  (�0jt) > 0  (�jt0) > 0 (2:1)

imply  (�0jt0) = 1.
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Thus, for nonrandomized con�dence sets, a con�dence set is nonmonotone if

there exist � < �0; t < t0 such that  (�jt0) =  (�0jt) = 1 while  (�jt) =  (�0jt0) =
0.

There are three other logically equivalent versions of De�nition 2.1. Namely

that for � < �0; t < t0; [ (�jt) < 1;  (�0jt) > 0;  (�0jt0) < 1] )  (�jt0) = 0; or

[ (�jt0) > 0;  (�0jt0) < 1;  (�jt) < 1] )  (�0jt) = 0; or [ (�jt0) > 0;  (�0jt0) <
1;  (�0jt) > 0])  (�jt) = 1.

Now let G denote a prior (generalized prior) on the parameter space �, let

p(�jt) denote the posterior density of �jT = t, and f(t) the marginal density of

T . The prior G can be written as G = G1+G0, where G1 is singular with respect

to Lebesgue measure and G0 is absolutely continuous. G1 is supported on S1, a

set of Lebesgue measure 0. Let g0(�) = dG0=d� be the density of G0.

Theorem 2.2. For loss function (1:1) there is a version of the Bayes (gener-

alized Bayes) procedure which is monotone. Furthermore, any Bayes procedure

must agree with the monotone Bayes procedure a.e: (G � ��), where (G � �� )
denotes the indicated product measure.

Proof. Integrate (1.2) with respect to the prior G(�), interchange the order of

integration, write the absolutely continuous part of the joint density of (t; �) as

p(�jt)f(t), and note that the expected risk is minimized for each t essentially by

 (�jt) =

8>><
>>:

1; if � 2 S1,
1; if p(�jt) > b,

0; if p(�jt) < b,

anything, if p(�jt) = b,

(2:2)

where

p(�jt) = g0(�)fT (tj�)R
g0(u)fT (tju)du +

R
fT (tju)G1(du)

:

Furthermore, every Bayes procedure must satisfy (2.2) a.e: (G � �� ). Note

that for  (�jt) determined by (2.2),  (�jt) < 1 and  (�0jt) > 0 can only occur if

� =2 S1 and p(�jt) � b � p(�0jt). Since p(�jt0) < p(�0jt0) by the SMLR property of

fT (tj�);  (�jt0) > 0) p(�jt0) � b) p(�0jt0) > b)  (�0jt0) = 1.

In order to develop complete classes for loss function (1.1) we need to intro-

duce the notion of essential admissibility. This is because there are no nontrivial

admissible procedures for the loss functions we study. To see this, note that given

 (�jt), if �0 is any value such that E�0( (�0jT )) < 1, then  0(�jt) =  (�jt) for
� 6= �0, and  

0(�jt) = 1 if � = �0 is better than  .

De�nition 2.3. The con�dence set estimator  (�jt) is essentially admissible

(e-admissible) if there does not exist a  0(�jt) such that

R(�;  0) � R(�;  ) a.e. � (w:r:t: ��) (2:3)
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and

��f� : R(�;  0) < R(�;  )g > 0: (2:4)

An e-essentially complete class is such that for any procedure  outside the

class, there exists one in the class, say  0, such that (2.3) holds. Now let the set

of con�dence set estimators (decision rules) be D = f : ��T ! [0; 1];  jointly

measurable g. This can be considered as a subset of L1(� � T; d� � dt) under

the weak* topology. The subset is closed and bounded and hence compact.

Theorem 2.4. For loss function (1:1), the collection of e-admissible con�dence

set estimators is the minimal e-complete class i.e. every con�dence set not in

the class is dominated by an e-admissible procedure.

Proof. The proof is given in the Appendix.

Given the contents of the proof we also get the following as a corollary.

Corollary 2.5. For loss function (1:1) the limits (in D) of sequences of Bayes

con�dence sets are an e-essentially complete class.

Proof. The proof is given in the Appendix.

3. Interval Property (Property I)

De�nition 3.1. The con�dence set estimator  (�jt) has the interval property

(a.e.) if (except for a �-set of measure zero),  is nonrandomized and ft :  (�jt) =
1g is an interval for every �.

For the remainder of this section we assume that the distribution fT (tj�)
is strictly totally positive of order at least 3 (STP3). (Note that exponential

family densities qualify.) See Karlin (1968) for the de�nition of TP3 and STP3.

Karlin (1968), Section 5.3.1 asserts that STP3 implies SVR3 where SVR3 stands

for the strict variation reducing property of fT (tj�). See Brown, Johnstone and
MacGibbon (1981), Section 2 for the de�nition of SVR3.

Theorem 3.1. For the loss function (1:3), and hence for the loss function (1:1),

the set of procedures having the interval property is an e-complete class.

Proof. Let  be any procedure. De�ne  0 as a procedure with property I as

follows:

 0(�jt) =
�
1; if a(�) < t < b(�);

0; otherwise,
(3:1)

where a(�); b(�) are the unique solutions to

Z b(�)

a(�)

fT (tj�)dt =
Z
 (�jt)fT (tj�)dt; (3:2)
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and Z b(�)

a(�)

@

@�
fT (tj�)dt =

Z
 (�jt) @

@�
fT (tj�)dt: (3:3)

(The STP3 property implies that a(�); b(�) are uniquely determined by (3:2)-

(3:3). Measurability of a(�) and b(�) then follows as an application of the Stsche-

golkow selection theorem. (See, e.g. Brown and Purves (1973).)

Now let � be a �xed point in �. Let �A(�) be the indicator function for a

set A and note that [ (�j�) � �(a(�);b(�))(�)], has at most two sign changes, from

positive to negative, to positive. Furthermore, from (3.3),

@

@�

Z
[ (�jt) � �(a(�);b(�))(t)]fT (tj�)dtj�=� = 0: (3:4)

Also, from (3.2),

Z
[ (�jt) � �(a(�);b(�))(t)]fT (tj�)dt = 0: (3:5)

Hence the SVR3 property implies
Z
[ (�jt) � �(a(�);b(�))(t)]fT (tj�)dt � 0; (3:6)

with strict inequality for � 6= �, unless  (�j�) = �(a(�);b(�))(�) a.e. For the vector
risk (1.4), the second components for  and  0 are the same by virtue of (3.5),

but (3.6) implies that

Rv
1(�;  ) � Rv

1(�;  
0); (3:7)

with strict inequality unless  =  0 a.e: on R2.

A rationale for Theorem 3.1 comes from the duality of con�dence sets and

testing, along with admissibility implications derived by Cohen and Strawderman

(1973). For STP3 densities, interval tests of a simple null hypothesis against a

two sided alternative form a complete class. The criteria of size and power for

testing are in one to one correspondence with one minus probability of true cover-

age and probability of covering false values respectively. In fact, a con�dence set

is admissible using these criteria as a vector risk if and only if the corresponding

family of tests are. Cohen and Strawderman (1973) demonstrate that inadmis-

sibility for a con�dence set in terms of these risk criteria implies inadmissibility

if the second of the criteria is replaced by expected length. Thus any noninter-

val procedure would be inadmissible by either set of risk criteria. The proof of

Theorem 3.1 has the advantage that it is constructive.

Corollary 3.2. For loss function (1:3) and hence for (1:1), nonrandomized

con�dence set estimators are an e-complete class.



CONFIDENCE SET ESTIMATION 297

Corollary 3.3. All Bayes procedures have property I a.e: and are nonrandom-

ized.

Lemma 3.4. Let  1 and  2 be any two con�dence set estimators. Then there

exists a con�dence set estimator  , such that

Rv
1(�;  ) < (Rv

1(�;  1) +Rv
1(�;  2))=2 (3:8)

for every � such that �ft 2 � j 1(�jt) 6=  2(�jt)g > 0,

and

Rv
2(�;  ) = [Rv

2(�;  1) +Rv
2(�;  2)]=2: (3:9)

Proof. Consider the procedure de�ned by  0 = ( 1 +  2)=2. This procedure

has risk [R(�;  1) + R(�;  2)]=2. Unless  and  0 are equivalent, the procedure

 0 does not have property I since it is a randomized procedure. The lemma now

follows via the strict inequality in (3.7).

Corollary 3.5. If  is e-admissible and R(�;  ) = R(�;  0) a.e: then  and  0

are equivalent. Consequently any e-essentially complete class is also e-complete.

Proof. Immediate from Lemma 3.4.

Before stating the last complete class theorem we need a remark. We say

that  is monotone (a.e.) if there is a set N of measure zero in IR2 such that

 satis�es conditions (2.1) everywhere on IR2�N (i.e. for all (�; x) such that

(�; x) =2N). If  is monotone (a.e.) and has property I (a.e.) then it is possible

to construct a version which is monotone and has property I. To see this, let N

be the exceptional set o� which  is monotone with property I. Let N 0 = f� :
�fx : (�; x) 2 Ng > 0g. Note that N 0 is measurable and �(N 0) = 0. Since  has

property I, fx :  (�jx) = 1g must be an interval a.e. Let M(�) be the closed

interval such that �fM(�)�[x :  (�jx) = 1]g = 0. Here � means symmetric

di�erence. Now de�ne

 0(�jx) =
8<
:
1; if � 62 N 0 and x 2M(�),

1; if � 2 N 0,

0; if � 62 N 0 and x 62M(�).

One can check that  0 has the desired property.

Now we prove

Theorem 3.6. For loss function (1:1), the set of monotone procedures having

property I a.e: is an e-complete class.

Proof. As a consequence of Corollaries 3.2 and 3.5 we need only show that if  

has property I and is the limit in D of a sequence of Bayes procedures, then  is
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also monotone. Hence assume  has property I and there exist Bayes procedures

 i; i = 1; 2; : : : such that  i !  in D (i.e.  i !  in the weak* sense meaningR
g(t; �)[ (�jt)�  i(�jt)]d�dt! 0, for every �nitely integrable g on IR2. Since  

is nonrandomized and since 0 �  i � 1, this convergence occurs if and only if

 i !  in measure (i.e. �(f(t; �) : j (�jt)�  i(�jt)j > �g) ! 0, for every � > 0).

However, then there exists a subsequence fi0g such that  i0 !  a.e. Since each

 i is monotone and has property I it is then easy to check that  is monotone

a.e: with property I a.e. The remark preceding Theorem 3.6 claims that  can

be modi�ed to be exactly monotone with property I.

Corollary 3.2 yields a constructive analogue of the Rao-Blackwell theorem.

Take any con�dence set procedure not based only on a su�cient statistic. By con-

sidering the projection of the procedure onto the space of the su�cient statistic a

randomized procedure, with the same risk function as the original procedure, is

determined. The construction in Theorem 3.1 applied to the above randomized

procedure yields a better procedure based on the su�cient statistic.

Similar reasoning yields the fact that a procedure based on two observations

is strictly better than a procedure based on just one. This follows since one

can randomize between two separate procedures each based on one observation,

thereby arriving at a randomized procedure whose risk equals the risk of the

procedure based on one observation. Again the construction in Theorem 3.1

yields a strictly better procedure based on two observations.

We note that the Rao-Blackwell analogue and the fact that two observations

are better than one work for the vector risk function (1.4). This is satisfying in

the sense that in con�dence estimation one frequently seeks con�dence procedures

whose probability of coverage exceeds a given value. The construction of Theorem

3.2 entails matching the second component of the vector risk, and so the better

procedure satis�es the probability of coverage constraint.

4. Lower Con�dence Bounds

In this section we make some observations in connection with lower con�-

dence bounds. For the statistical model given in Section 1 we consider lower

con�dence bounds for the loss function

B(� � a)+ + [1� I(0;1)(� � a)]; (4:1)

where a is the action (the lower con�dence bound) and B is a predetermined

constant. (Variations on (4.1), to accommodate scale parameters or other special

problems can be made.)

Our �rst observation is that the loss function in (4.1) is bowl shaped and also

satis�es the conditions in BCS (1976). This means that the monotone procedures

are a complete class and all results of BCS (1976) apply in this situation.
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Our next observation is in connection with the model where T � N(�; �2=n),

�2 known or unknown. Here it is of interest to derive the best invariant lower

con�dence bound. A discussion of invariant con�dence bounds is in Casella and

Berger (1990). First, let �2 be known and equal to one. The best invariant lower

con�dence bound is (T +Cn=
p
n) where Cn is chosen to minimize

BE�(� � [T + Cn=
p
n])+ + 1� P�((� � [T +Cn=

p
n]) > 0): (4:2)

By changing variables in (4.2) and di�erentiating with respect to Cn the appro-

priate Cn is the solution to the following equation:

'(Cn) = (B=
p
n)�(�Cn); (4:3)

where ' and � are the p.d.f. and c.d.f. respectively of a standard normal variable.

We note that for B=
p
n su�ciently small, Cn is the unique negative solution to

(4.3).

It is interesting to note that Cn ! �1 as n ! 1 at the rate (log n)1=2

which means that Cn=
p
n ! 0 as n ! 1 at the rate (log n=n)1=2. The facts

that Cn ! �1 and Cn=
p
n ! 0 imply that the risk of the procedure tends to

zero as n!1. This is consistent with the idea that in a loss function approach

to a problem, the risk tends to zero as the sample size tends to in�nity. This is

unlike typical approaches to con�dence estimation where one minus probability

of coverage does not usually go to zero. The particular rate of (logn=n)1=2 is the

same as found in con�dence sequences. See Robbins (1970).

When �2 is unknown, we consider the loss function

B[(� � a)+=�] + [1� I(0;1)((� � a)=�)] : (4:4)

The best invariant lower con�dence bound is of the form T + Cns=
p
n. (See

Casella and Berger (1990) for the discussion of the group leaving the problem

invariant.) Here s2 is such that �s2=�2 is �2� and is independent of T . A calcula-

tion similar to that performed in the case �2 known yields the optimal value of

Cn to be the solution of

(B=
p
n)

Z
1

0

f�(�Cn u
1=2)e�u=2 u

�+1

2
�1=

p
2� �(�=2)2�=2gdu

= (1=(C2
n + 1))

�+1

2 �(
� + 1

2
)
p
2=�(�=2)

p
2�:

(4:5)

As Cn ranges from �1 to 0 we note the left hand side decreases while the right

hand side increases so a unique solution exists provided B=
p
n is su�ciently

small.
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Appendix

Theorem 2.4. For loss function (1.1), the collection of e-admissible con�-

dence set estimators is the minimal e-complete class, i.e. every con�dence set

estimator not in the class is dominated by an e-admissible procedure.

Proof. Since D, the set of decision rules can be regarded as a closed subset of

L1 under the weak� topology, D is compact.

Now, for every �1 < 1 < 2 <1, de�ne

R�((1; 2);  ) = [1=(2 � 1)]

Z 2

1

R(�;  )d�: (A.1)

We say the procedure  is e�-better than  0 if R�((1; 2);  ) � R�((1; 2);  
0)

for all (1; 2) 2 IR2 and if strict inequality holds for some (1; 2). Clearly,  

is e�-admissible if and only if it is e-admissible. Hence an e�-complete class is

e-complete and conversely.

For each (1; 2) consider the map R�((1; 2); �) : D ! [0;1], de�ned by

R�((1; 2);  ). This is a lower semi-continuous map. See Brown (1977). Hence,

by standard reasoning, (see for example Ferguson (1967), p: 87), the e�-admissible

procedures are an e�-complete class.

Corollary 2.5. The limits (in D) of sequences of Bayes con�dence sets are an

e-essentially complete class.

Proof. The \standard" conclusion is that limits of sequences of Bayes procedures

for simple (i.e. �nitely supported) priors over f(1; 2) 2 IR2g are an e�-essentially
complete class. Hence they are also an e-essentially complete class. However, if

a prior G� gives mass �i to (1i; 2i), then it is equivalent to consider a prior

in the original problem having density �(�i=(2i � 1i))�(1i;2i)(�), i.e. the two

priors have the same Bayes procedures (as well as the same Bayes risk). Hence

the corollary follows.
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